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Fatigue damage reduction in hydropower
startups with machine learning

Till Muser1, Ekaterina Krymova 1 , AlessandroMorabito 2, Martin Seydoux2 &
Elena Vagnoni2

As the global shift towards renewable energy accelerates, achieving stability in
power systems is crucial. Hydropower accounts for approximately 17% of
energy produced worldwide, and with its capacity for active and reactive
power regulation, is well-suited to provide necessary ancillary services. How-
ever, as demand for these services rises, hydropower systems must adapt to
handle rapid dynamic changes and off-design conditions. Fatigue damage in
hydraulic machines, driven by fluctuating loads and varying mechanical
stresses, is especially prominent during the transient start-up of the machine.
In this study,we introduce adata-driven approach to identify transient start-up
trajectories that minimize fatigue damage. We optimize the trajectory by
leveraging a machine learning model, trained on experimental stress data of
reduced-scale model turbines. Numerical and experimental results confirm
that our optimized trajectory significantly reduces start-up damage, repre-
senting a meaningful advancement in hydropower operations, maintenance,
and the safe transition to higher operational flexibility.

As the global community intensifies efforts toward a sustainable
future, the shift to renewable energy sources has become a central
objective worldwide. The European Union, for instance, has set an
ambitious target to derive at least 42.5% of its energy from renewables
by 2030, with aspirations to push this to 45% under its Green Deal
framework1. This is part of a broader global trend towards dec-
arbonization, where long-term scenarios point to even more sub-
stantial reductions in greenhouse gas emissions2,3. Central to this
transformation is the reliance on intermittent renewable energy
sources, such as wind and solar power, necessitating the gradual
phase-out of traditional fossil fuel-based power plants. This transition
requires robust support systems to maintain frequency and voltage
stability, emphasizing the need for ancillary services that ensure
proper resilience in both power production and consumption.
Hydropower is particularly well-suited for this role, given its ability to
provide both active and reactive power regulation4. The conventional
design of hydraulic turbines has traditionally been optimized for high
performance during steady-state operations, where the system oper-
ates under constant or nearly constant control parameters over time.

However, the demand for ancillary services is projected to rise sig-
nificantly in the coming decades, altering the typical operating sche-
dules of thesemachines. To address the increasing need for flexibility,
hydroelectric technologies must be adapted to handle the challenges
posed by rapid dynamic changes and more frequent start-up sequen-
ces. This often entails operating hydraulic machines under off-design
conditions, for which the machine components suffer from intense
dynamic loads leading to fatigue damage. Historically, limited con-
sideration was given to fatigue damage caused by start-up sequences
in the hydraulic turbine design, as their impact over time was con-
sidered negligible. After all, prior to the 2000s, Francis turbines were
built to handle only a few dozen start-stop cycles per year, unlike the
recent decade, where they may experience up to 500 cycles annually
due to the significant rise in intermittent energy sources5. Fatigue
damage refers to the deterioration of amaterial’s structural properties
due to the initiation and propagation of cracks under cyclic or fluc-
tuating stresses. In hydraulic machines, such cracks often originate
during manufacturing processes, such as casting and welding, or
develop over time during prolonged operation under high loading
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conditions. Many machine components are exposed to fluctuating
stresses caused by fluid-structure interactions and vibrations, with
runner blades subjected to the most intense loading6–8. The fluid-
structure interactions and vibrations depend on the operating condi-
tion or operating sequence of the hydraulic machine, such as the start-
up trajectory, which is defined by its control variables, namely the
turbine rotational speed and the guide vanes opening angle (GVO).
Therefore, in the context of modernizing the hydropower sector,
accurately estimating these stresses and the corresponding induced
fatigue is critical for operational optimization and maintenance plan-
ning to avoid unexpected failures and outages. Estimating fatigue
damage typically involves conducting detailed experiments at the
hydropower plant, where mechanical stresses are measured using
strain gauges placed on the most stressed parts of the components9.
This data is then utilized to estimate the reduction in the component’s
lifespan through fatigue curves. However, this process is cumbersome,
as it requires prior numerical simulations to identify the stressed areas
and involves the installation of complex equipment, which temporarily
halts power production. All these reasons highlight the impracticality
of conducting systematically such an experimental campaign on an
already commissioned hydropower plant.

Experimental tests on the turbine in reduced-scale physical models
are usually carried out to verify that the design of the prototype will
meet the expected performance. At this stage, specific tests could also
estimate local damage and their lifespan. During the experiments, the
controlled parameters, such as turbine speed, GVO, and others, are
continuously measured, as well as strain stress induced by vibrations.
Damage incurred due to fatigue can be further estimated via
the Rainflow-counting algorithm10 followed by Miner’s rule11. The
reduced scale model tests are expensive, and the complexity of the
components’ geometry makes difficult to create accurate analytical
scale models. At the same time, data-driven approaches enable the
development of a model for stresses as a function of control para-
meters, based on the experimental data. Such models can provide
further insights into the lifespan of the machine. A study in reduced-
scale model Francis turbines has found that transient operations, in
particular conventional start-stop sequences, caused severe fatigue,
equivalent to many hours or even days at low discharge operation12,13

compared to operating at nominal conditions. This is because fatigue
damage is largely associated with significant stress alterations14 on the
turbine runner blades, which occur during start-up. Further research
demonstrated that modifying the start-up scheme can significantly
reduce fatigue damage and extend the life expectancy of Francis
turbines15. An alternative starting trajectory, made possible by variable
speed capable power generators, has been investigated in16 and has
been found to significantly reduce fatigue. Until now, to our knowl-
edge, there has been no study conducted using machine learning
methods to optimize start-up trajectories in the hydropower domain.

In this work, we investigate the possibility of the data-driven
search for the least damaging transient start-up trajectory. This thor-
ough search of the trajectory space is facilitated bymodeling the stress
using an input Time-Frequency deep neural network (iTF-DNN)model,
trained on data of several start-up trajectory measurements obtained
in a dedicated experimental campaign on a reduced scale model
complying with IEC standards and fully hydraulically andmechanically
homologous to the full scale hydraulic machine at the Hydraulic
Machines Platform at the Swiss Federal Institute of Technology Lau-
sanne (EPFL-PTMH)17. Relying on the predictions of the iTF-DNN, and
the Rainflow-counting/Miner’s rule approach to estimate fatigue
damage, we employ pathfinding techniques to optimize a start-up
control trajectory for predicted incurred fatigue. To evaluate the
potential effect of optimization in practice, measurements of induced
stresses for the optimized trajectorywere recorded on a reduced-scale
model at EPFL-PTHM during the second campaign18. The results sug-
gest that using the optimized trajectory can significantly reduce the
fatigue damage accumulated during the hydraulic machine start-up.

Results
Workflow for optimization and validation of start-up trajectory
An overview of the workflow is shown in Fig. 1, which consists of four
major steps. First, the stress neural network model is trained on the
dataset of the first experimental campaign which contains measure-
ments of the stresses and control inputs for the four known types of
start-up trajectories (Fig. 1a). A complete data description of the
dataset collection can be found in Methods. Next, the optimal trajec-
tory is identified using Dijkstra’s algorithm, relying on fatigue damage
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estimates derived from the predicted stress (Fig. 1b). To evaluate the
optimized trajectory in the real experiment, it was tested in the
reduced-scale model test at EPFL-PTHM (Fig. 1c). Finally, we validate
the damage of the obtained stress data of the second experimental
campaign and compare the damages of the known trajec-
tories (Fig. 1d).

Stress model-based damage prediction
We focus on modeling the stress, as it can be directly measured in the
turbine. Fatigue damage can be derived via post-processing a stress
sequence (see “Methods”). Notably, stress which is measured in the
reduced-scale model can be scaled to a full-size hydraulic machine19.
To model the stress, we introduce the iTF-DNN stress model, which
serves as a core component for optimizing stress-induced fatigue
damage in our approach.

Consider a decomposition for the observed time series of stresses
of the length T, yt =mt + ot + ϵt, t = 1,…, T, wheremt is a slowly varying
trend, ot is an oscillatory component, and ϵt is random noise. The iTF-
DNN model consists of two parts: a trend model for mt trained in the
original stress scale, and another model for ot, trained in the time-
frequency domains of the stress observations. One of the key
assumptions we make is that the slow-varying trend of the stresses
depends on the control parameters instantaneously13: the trend mt is
deterministic and depends solely on the current input control values
GVO, turbine rotational speed, and Head (and not on the control his-
tory). Head is set by site conditions, while GVO and turbine rotational
speed are the parameters which typical control systems of hydraulic
machines, such as Proportional-integral-derivative (PID) controllers,
regulate to steer operations. To model the trend part, we trained a
neural network that takes control values at time t as input and outputs
the stress values by optimizing the mean squared error (MSE). See
Fig. 2a for an example of a fitted trend model estimate. The model of
the trend produces non-oscillating predictions. The remaining oscil-
latory component ot is allowed to depend on the control history in a
non-instantaneous way. In particular, we estimate ot in the time-
frequencydomain, bymodeling amplitudes andphases corresponding
to a range of frequencies of the short-time Fourier transform (STFT) of
the residual after estimatingmt as a function of the inputs, see Fig. 2b.
The estimate of the oscillatory part in iTF-DNN is recovered through
the inverse STFT (ISTFT) based on the estimates of the amplitudes and
phases of the STFT. The architectures of the models of the trend mt

and of the STFT amplitudes and phases of ot are based on ResNet20).
Thefinal iTF-DNNmodel of stress combines themodel of the trend and
the model of the oscillation, see Fig. 2a. We describe iTF-DNN more
formally in Methods.

To train and validate the model, stress measurements of four
types of start-up trajectories were available to us as a result of the
XFLEX HYDROproject16,17: The standard Classic start-up trajectory, the

Linear, BEP and 2Slopes trajectories (see “Methods” for data collection
description). Note that the non-classic start-up sequences take
advantage of variable speed unit capability and are defined according
to a coupled 1D-3D numerical simulations study targeting the optimi-
zation of the trajectory by using reducedordermodels of the hydraulic
system21. The iTF-DNN is trained on the data of two well-recorded
sensors for the Classic, Linear, and 2Slopes startups, and validated on
the BEP trajectory. The model demonstrated values of R2 greater than
0.97 on both training and validation datasets, see the details in
Methods and Table 3 therein.

Aswewill further use the stressmodel to identify anoptimal start-
up trajectory, we verify that the damage estimates mimic the damage
of themeasured stress well. Damage comparison in Fig. 3 for the three
types of start-ups used for training (Classic, Linear, and 2Slopes tra-
jectories) and testing (BEP trajectory) shows that on average the
damage from the predicted stress is proportional to the damage of
themeasurements. This suggests that the iTF-DNNmodel predicts the
stress from the input controls with enough accuracy to construct a
reliable damage proxy, which can then be used for optimization
purposes.

Model-based optimization of the start-up
In optimizing the start-up trajectory, our goal is to minimize damage
by adjusting the turbine speed and GVO. The third input, the Head,
while used to train the neural network model, is kept constant, as it is
assumed to remain static during start-up. For a new candidate u,
containing the trajectories of controls, we estimate the stress using the
iTF-DNNmodel (denoted as fNN below) and then evaluate the incurred
(scalar) damage as

D̂ðuÞ= Damage ðf NNðuÞÞ: ð1Þ

The goal of the optimization is tofind the sequence of controls,u? 2 U,
that minimizes the predicted fatigue damage

u? = argmin
u2U

D̂ðuÞ: ð2Þ

Here, U is a space of admissible trajectories, satisfying a number of
conditions (see (11)-(13) in Methods) that ensure its feasibility.

For trajectory search, we applied Dijkstra’s Algorithm22, which has
a long history of use in mechanical engineering, particularly in trajec-
tory optimization. Recent applications include planning efficient
motion paths for robots23,24, optimizing flight trajectories25–32, enhan-
cing automated guided vehicle andmobile robots routing33–36, to cite a
few. We reformulate the original problem stated in Eq. (2) as finding
theminimal-cost path between twonodes in aweighted graph,making
it suitable for the application of Dijkstra’s algorithm. To achieve this,
we discretize the phase space of GVO and turbine speed, and build a
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graph taking into account the conditions for trajectory admissibility.
We use the fatigue damage, computed from the stress estimates pro-
vided by the iTF-DNN, as a cost function. See “Methods” for the details.

The resulting trajectory is visualized in Fig. 4b,which also includes
uncertainty estimates for the trend part of the iTF-DNN model. To
obtain uncertainty estimates, we employed a deep ensemble37–39 con-
sisting of 10 independently trained trend component models of iTF-
DNN. Note that, due to the model’s instantaneous dependence on the
control values, the uncertainty estimates are also independent of the
control history. The optimized trajectory passes primarily through
regions of low uncertainty, suggesting that the results are likely
accurate and that the trajectory is suitable for testingwith the reduced-
scale model. Note that the results for the optimized trajectory rely on
the iTF-DNN,which is trained on limited data. Additionally, uncertainty

estimates are based solely on the trend model; thus, they do not
account for potential variability introduced by the oscillationmodel. A
comparison of the predicted damage for trajectories tested during the
first experimental campaign with the damage estimates from the
optimization result is presented in Table 1. We provide both absolute
damage values and damage relative to the Classic baseline trajectory.
As expected, the optimized trajectory results in significantly lower
estimated damage, with a reduction of over 99% compared to Classic.

Experimental validation by reduced scale model
To assess the performance of the optimized start-up trajectory
experimentally, we performed reduced-scale model tests at the EPFL
PTMH platform18. Note that the stress sensors that had well-recorded
measurements in the first data acquisition used to train iTF-DNN
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models andget theoptimized trajectoryweredifferent fromthose that
worked non-faultily during the second reduced scale test. The Table 2
gives the overview of the the measured damage of the start-up tra-
jectories in reduced-scale model 1) in terms of raw damage, 2) in
equivalent time at the Best Efficiency Point (see “Methods”), 3) relative
to the Classic trajectory. The results reveal that the optimized trajec-
tory results in a reduction in average damage of over 99.5% compared
to classically used trajectories (Classic), and over 70% compared to
previously investigated trajectories16 relying on variable-speed power
converters.

The results of damage prediction differ from the ones in Table 1. A
few reasons for that are: 1) different sensors working non-faultily
during the data acquisition campaigns; 2) in practice the control tra-
jectories do not strictly follow the provided theoretical instructions,
e.g., the fluctuations of the real control variables measurements are

visible in the Fig. 5a; 3) the optimized trajectory passes through the
regions of the phase space without training data available (compare
Fig. 4a, b) and model prediction exhibits uncertainty (Fig. 4b).

Qualitatively, the expected improvements were proven to be
correct in practice: While running a single Classic trajectory start-up
incurs damage equivalent to 111 days, the optimized start-up is only
equivalent to 9.5 hours.

Discussion
We present the results of a data-driven methodology for determining
themost effective start-up trajectory thatminimizes fatigue damage in
hydraulic machines, which is achieved by leveraging a deep learning
iTF-DNNmodel to analyze stress data collected frommultiple start-up
tests conducted at EPFL-PTMH during a dedicated experimental
campaign. Based on iTF-DNN and existing fatigue damage estimation
techniques, we employ a pathfinding algorithm to refine the start-up
control trajectory based on predicted fatigue levels. The optimized
start-up trajectory produced by the optimization framework is defined
as a function of the same control parameters typically employed in
hydropower stations to steer hydraulic machines. Additionally, the
trajectories are designed to comply with the ramping rate constraints
of the corresponding full-scale machine, ensuring they can be scaled
and implemented in real hydropower plants.We ensure the viability of
our optimized control trajectory by conducting another campaign of
reduced-scalemodel tests at EPFL-PTMH.Themeasurements collected
during this campaign confirm a significant reduction in incurred fati-
gue damage for the optimized control trajectory.

To determine whether we could further improve the optimized
trajectory by training the iTF-DNN model on the more extensive data
from the second experimental campaign, and re-optimizing the
damage, we repeated the modeling process on the second campaign
dataset, which included both steady-state and transient data (along
with the new trajectory).We re-ran the optimization with the retrained
iTF-DNN model to assess any potential improvements in the resulting
trajectory. However, the new trajectory showed only slight differences
from the one presented in this paper, with a similar damage estimate.
We conclude that while further optimization might offer some bene-
fits, these are likely to be relatively minor.

Table 1 | Damage for optimized start-up based on stress pre-
diction by iTF-DNN vs other start-ups of the first campaign

Start-up trajectory Damage % of Classic

Classic 3.213 × 10−22 100

Linear 2.270 × 10−24 0.71

2Slopes 4.989 × 0−24 1.55

BEP 1.203 × 10−23 3.74

optimized 1.014 × 10−24 0.32

Table 2 | Damage of start-ups measurements in the second
reduced-scale model experimental campaign

Start-up
trajectory

Damage Equivalent time at Best
Efficiency Point, s

% of
Classic

Classic (2.555 ± 1.629) × 10−21 (9.626 ± 6.139) × 106 100

Linear (5.770 ± 2.726) × 10−22 (2.174 ± 1.027) × 106 22.6

2Slopes (3.690 ± 0.610) × 10−23 (1.390 ± 0.230) × 105 1.44

BEP (2.691 ± 0.348) × 10−23 (1.014 ± 0.131) × 105 1.05

optimized (9.132 ± 0.462) × 10−24 (3.441 ± 0.174) × 104 0.36
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When evaluated in reduced-scale model tests at the EPFL-PTMH
platform, the optimized trajectory achieves an average damage reduc-
tion of over 99.5% compared to the classically used trajectory, and over
70% compared to previously investigated trajectories that were not
optimized to minimize the damage and relied on variable-speed power
converters. While the reduced-scale model cannot fully replicate the
complete hydraulic response of a hydropower station (in particular the
pressure in the hydraulic system and the vibrations at the shaft and
casing, due to complexity and interactions among all components of the
hydroelectric units), as demonstrated in19, the stresses on the runner
bladesobtained fromthese reduced-scalemodel tests canbe transposed
to the full-scale model with fairly good agreement. If stresses were
measuredon the full-scalemachine, as has beendone in40, our proposed
methodology would be fully applicable and the stress modeling and
trajectory optimization could be recalculated based on an updated
database. By minimizing the damage experienced during start-up, the
lifespan of critical components can be extended, resulting in improved
efficiency and performance of the hydropower system. Our results
demonstrate the potential of data-driven methods based on reduced-
scale measurements to optimize hydraulic machine operation for sus-
tainable energy generation, paving the way for future studies to trans-
pose and validate the framework in real-world hydropower plants.

Methods
Data collection
The first experimental campaign dataset contains measurements of the
input and output quantities for about 100 transient operations of a
reduced-scalemodel of Francis turbines for four different startup types.
In these tests, strain gauges are attached toboth theguidevanes axis and
the runner blades tomeasure themechanical stresses. Analog signals of
the measurements are acquired through a National Instrument (NI)
CompactDAQsystemandanNIPXI system forpressurefluctuations and
stresses. Thedurationof the time series varied from7 to60secondswith
a maximal frequency of measurements of 5000Hz. Some of the obser-
vations had different frequencies, which were harmonized during pre-
processing by down-sampling all signals to 1000Hz.

The stresses induced in the turbine depend primarily on two
control variables: the rotational speed of the runner and the discharge.
As the discharge observations suffer from measurement noise, the

GVO variable is used, as the characteristic curve of the hydraulic
machine bonds the turbine discharge with its guide vane opening
passage. In the reduced-scale model platform, a feeding pump
attempts to maintain a constant Head during the start-up. In practice,
abrupt changes in discharge due to rapid opening of the guide vanes
lead to a decrease inHead,which is compensatedby a quick increase of
the feedingpumpspeed.Due to thepump’s inability to instantly adjust,
Head measurements may fluctuate. Hence, to construct the model of
the stresses we use the Head, GVO and turbine speed as the inputs.
During the trajectory optimization, we vary only two parameters, the
Turbine Speed and the GVO, and keep the Head at a fixed level.

The data consists of real measurements of four sensors posi-
tioned with the turbine of the reduced scale model, collected for
four different start-up types. We examined each type at different
time scales, corresponding to Froude numbers in the range of
{0.9, 1.0, 1.2, 2.4, 3.6, 4.8, 6, 7.2}. Trajectories shorter in time cor-
respond to smaller Froude numbers, see Fig. 6. Measurements were
collected for inputs (GVO, Turbine speed, Head) and outputs
(stresses in several positions in the turbine). Each experiment was
repeated ten times. The extreme conditions within the turbine
sometimes led to sensor failure, causing uncontrolled drifting or
high oscillations and rendering some measurements unusable. The
model was trained on all runs that did not show visible drifts or
other excessive noise. Out of four sensors only two were recorded
consistently well, i.e., without persistent drifts and high noise. These
sensors were further used in the stress modeling.

The standard Classic start-up sequence corresponds to the tra-
jectory employed with a synchronous generator directly connected to
the electrical grid through a transformer: First, the GVO, responsible
for the water discharge regulation, is increased up to approximately
20–25% to accelerate the turbine to the synchronous speed; in the
second phase, the GVO controller is adjusting the speed of the unit in
order to synchronize the generator’s phasor with the grid. During this
period, the unit is operated under speed-no-load (SNL) conditions,
featuring strongly stochastic recirculating flow, low-frequency pres-
sure fluctuations and significant vibrations. Such flows lead to pre-
mature wear of the hydraulic machines41. Once the synchronization
process is completed, the GVO is increased to meet the desired active
power production, closing the start-up sequence.

0

500

T
u

rb
in

e
 S

p
e

e
d

 [
rp

m
]

Classic Linear 2Slopes BEP

0

10

G
V

O
 A

n
g

le
 [

°]

0

2

H
e

a
d

 [
m

]

0 200

Time [s]

0

5

S
tr

e
ss

 [
M

P
a

]

0 50 100

Time [s]

0 100

Time [s]

0 100

Time [s]

Fig. 6 | Start-up data of the first experimental campaign. Summary of the data used for training and validation, plotted by start-up type.

Article https://doi.org/10.1038/s41467-025-58229-z

Nature Communications |         (2025) 16:2961 6

www.nature.com/naturecommunications


The definitions of the other three available trajectories are tai-
lored to the specific constraints of the power plant case study. First,
the maximum GVO and closing rates are restricted by the plant’s
hydroacoustic parameters for safety measures. Additionally, the unit’s
rotational speed is set to follow three different acceleration paths:

• The Linear sequence corresponds to a linear increase of both the
GVOand theunit’s rotational speed to reach thedesired operating
point. The opening rate of the guide vanes corresponds to the
maximum permissible opening rate in order to shorten the
sequence asmuch as possible and to ensure the safe operation of
the power plant.

• The BEP trajectory involves adjusting the unit’s speed to achieve
optimal efficiency as the GVO increases linearly. The speed is
regulated throughout the activation sequence based on the tur-
bine’s hill chart to maintain this efficiency. Although BEP tradi-
tionally refers to the best efficiency point, we use the term BEP
trajectory here primarily to describe the trajectory itself, and the
meaning should be clear from the context.

• The 2 Slopes sequence is representedby two linear speed increases,
respectively two linear GVO increases to mimic the BEP trajectory
with simplified unit controller implementation. In the first part of
the sequence, the speed is increased progressively to avoid power
consumption in accelerating the power group. Only later, at higher
speed, apositive turbine’s torque isprogressively generatingpower.

After concluding the trajectory optimization, a second campaign of
measurements was carried out that included the optimized control tra-
jectory. Across the two reduced-scale data acquisition campaigns, dif-
ferent sets of sensors were successfully recorded, whereas for the input
parameters, the observations for both campaigns are of similar quality.

Damage computation
Damage incurred due to fatigue is estimated following standard
mechanical engineering practices: The loading cycles are computed
from the stress signal according to the Rainflow-counting method10.
Following that, the Miner’s rule11 using the Wohler curve19 quantifies the
damage caused by individual load cycles and sums up their contribu-
tions to produce a single damage estimate per stress trajectory. The
damage computation is carried out for each of the sensors, and the final
damage estimate equals themaximumdamage for the available sensors.

iTF-DNN stress model
At each timepoint for s sensorsweobserve the vector yt 2 Rs, indexed
by time t = 1, …, T. For the time series of length T denote stacked
vectors yt as y 2 Rs ×T : y = [ y1, y2,…, yT]. The trend component of the
stress is denoted by m 2 Rs ×T and the oscillatory high-frequency
component is denoted by o 2 Rs ×T . The control vectors are stored in
u 2 Rq×T , so that the vector ut 2 Rq represents the control values at
time t. The value of q equals 3 duringmodel trainingwhen all inputs are
used, and q = 2 during optimization, as one of the variables (the Head)
is kept fixed. For multiple trajectories of observed measurements, we
add additional indexing for the variables, e.g., yj,t, t = 1, …, Tj, where j
runs through the trajectory number. The stress depends on the input
parameters, and we omit this dependence in the notation.

To model stresses and optimize damage, we assume that stress
trends depend instantaneously on control parameters. This means that
at any given time point, the values of GVO, turbine speed, and Head are
sufficient to fully determine the average stress. With this in mind, we
propose the followingdecomposition for theobserved stress timeseries.

yt =mt +ot + ϵt , t = 1, . . . ,T , ð3Þ

wheremt is a slowly varying trend, ot is an oscillatory component, and
ϵt is random homoscedastic noise. The stress depends on ut 2 Rq,
q = 3, as additionally to GVO and turbine speed, the Head level was

added due to fluctuations of the measurements from the
constant value.

Ourmodeling choice fell on neural networks due to their ability to
capture complex, nonlinear relationships in highly oscillating time
series that depend on control variables. At the same time learning the
high-frequency oscillations is challenging42: A basic neural network
model tends to learn low frequencies primarily and can struggle with
approximations of high frequencies. Our work is inspired by the PFF-
DNN43 and PhaseDNN44 models to improve the learning of high-
frequency signals. Both models attempt to learn the signal repre-
sentation in the time-frequency domain by mimicking the Short-Time
Fourier Transform (STFT) of the signal (or the residual after modeling
the signal trend). Note that these models aim to learn an approxima-
tion of the observed signal using neural networks with no dependence
on input variables. Our case is more complex, as we are given time-
varying input parameters that affect the signal dynamics and, in par-
ticular, its STFT. Inwhat follows,we propose amodel that aims to learn
the dependence of the oscillatory signal dynamics on the available
input control parameters. We abbreviate our model as input Time-
Frequency deep neural network (iTF-DNN).

We assume mt is deterministic and depends only on the current
controls ut, and does not depend on the previous control history. The
remaining oscillatory component ot is allowed to depend on control
history in a non-instantaneous way. In particular, we estimate the
amplitude and phase of the STFT of the remaining signal (after having
estimated mt) depending on the control values in the neighboring
STFT windows. The estimate of the oscillatory component ot is further
recovered through an ISTFT based on the models of amplitudes and
phases of the STFT. We describe the models more formally below.

For damage estimation in the case of a large spread ofmt values,
thedamage inducedbyot ismuchsmaller, as according toMiner’s rule,
low-frequency oscillations with large amplitudes typically have a more
significant impact on cumulative fatigue damage compared to high-
frequency oscillationswith smaller amplitudes.Nevertheless, to obtain
a general model of stresses and estimate damage precisely, it is
important to model both the trend mt and the oscillations ot
accurately.

Trend model. We modelmt by a neural network (ResNet20) fm,θm
ðutÞ,

whereut are the input controlparameters andθm are theparametersof
the neural network, which are optimized by the minimization of the
mean squared error (MSE) between targets yt and the network’s pre-
dictions NNm(ut) on the training set of p time series of lengths
Tk, k = 1, …, p until convergence:

θ̂0 = argmin
θ

Xp
k = 1

XTk

t = 1

ð yk, t � fm,θðuk, tÞÞ2 ð4Þ

to obtain a preliminary estimate of the trend fm, θ̂0
ðuÞ.

Oscillatory component. Next, we estimate the residual

ôt = yt � fm, θ̂0
ðutÞ ð5Þ

between the observed stress value and the trend estimates to obtain a
de-trended oscillatory signal. We model the amplitude and phase of
the oscillatory residual by approximating its STFT with neural network
models dependent on the controls. For simplicity of notation, assume
s = 1, the extension to larger dimensions s of the output is
straightforward. Consider the STFT of the residual signal ô for one
trajectory: Given a window size W and hop size S, the STFT
components F ðôÞ½i, l� l = 1, . . . , L, L = ⌊(T − W)/S⌋, i = 1, …, ⌊W/2⌋ are
calculated for L windows of length W with the hop S and a set of
frequencies, indexed by i. We fixed the length of one window to
W = 1024 and S = 256. For each STFT window, we get vectors of
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amplitudes al and phases ϕl with components

al, i = jF ðôÞ½i, l�j, ϕl, i = arctan
Im ðF ðôÞ½i, l�Þ
Re ðF ðôÞ½i, l�Þ

� �
, i= 1, . . . , bW=2c:

ð6Þ

To model the amplitude and phase vectors al and ϕl, we train two
vector-output ResNet neural networks f a,θa

and f ϕ,θϕ
. These networks

take a control history �ul , corresponding to the l-th STFT window, as
input and are trained byminimizing the error in the frequencydomain,
combined with with the trend modeling error, using the initialization
θ̂0 for the trend model parameters:

θ̂m, θ̂a, θ̂ϕ = arg min
θ,θa ,θϕ

Xp
k = 1

XTk

t = 1

ð yk, t � fm,θðuk, tÞÞ2 ð7Þ

+α
XbW=2c

i= 1

Xp
k = 1

XLk
l = 1

ðai, l, k � f a,θa
ð�uk, lÞÞ2 ð8Þ

+ λ
XbW=2c

i = 1

Xp
k = 1

XLk
l = 1

sin
1
2
ðϕi, l, k � f ϕ,θϕ

ð�uk, lÞÞ2
� �

, ð9Þ

where α and λ are hyperparameters.
To obtain the estimates of o from the STFT estimate F̂ θ̂o

ðuÞ,
θ̂o = fθ̂a, θ̂ϕg, given by themodels of the amplitude f a, θ̂a

ð�ulÞ and phase

fϕ, θ̂ϕ
ð�ulÞ, l = 1,…, L, we apply an ISTFT to get f o, θ̂o

ðu, tÞ=F�1½F̂ θ̂o
ðuÞ�

t
,

such that f o, θ̂o
: RbW=2c× L ! RT . After each optimization gradient

step, the residual is estimated by (5) for the updated parameters of the
trend model.

The final iTF-DNNmodel combines themodel of the trend and the
model of the oscillation

f NNðutÞ= fm, θ̂m
ðutÞ+ f o, θ̂o

ðu, tÞ: ð10Þ

During inference, we perform forward passes through the networks to
obtain trend and oscillatory predictions for a given control trajectory.

Model performance. The iTF-DNN model performance results on
training and validation on the data from the first experimental cam-
paign are shown in Table 3, namely mean and standard deviation of
per-trajectory R2, MSE, Bias (average of non-absolute residual values)
of predictions together with (Min, Max) of observations for reference.
The model has a tendency to have a small negative bias. Overall,
training and validation results show good agreement between the
errors on training and validation datasets.

Dijkstra optimization
Using the fitted iTF-DNN model, we implement an optimization pro-
cedure that systematically explores the space of possible trajectories
to find the lowest possible damage trajectory. For the damage opti-
mization process, we focus on the sensor exhibiting the best data
quality.

Consider stresses and input control trajectories in the interval of
time [0, T], sampledwith the time stepΔτ (at 1kHz,Δτ = 1ms). Note that
the Head level was used to train the iTF-DNN, as it can fluctuate in the
reduced-scale model, but during the trajectory optimization, we keep
the Head fixed and optimize the damage in the Turbine Speed and the
GVO. Thus, the stress depends only on two inputs: Turbine speed and
GVO, that is ut 2 Rq, where q = 2.

Recall that we are trying to solve (2), the problem of finding the
minimally damaging sequenceof controlsu? 2 U, whereU is a space of
viable trajectories, i.e., each sequence u° 2 U fulfills the constraints:

1. Boundary Conditions: The sequence starts at a standstill and ends
at operating conditions (uop),

u°
0 =0, u°

T =uop, ð11Þ

where T is not limited to a specific trajectory length.
2. Bounded increments: Neither the Turbine speed n nor the GVO g

decrease at any point and the trajectory does not exceedmachine
limits on turbine acceleration and GVO velocity;

0 ≤u°
t + 1 � u°

t ≤Δu: ð12Þ

3. Allowed: The trajectory lies completely within an allowed phase
space C,

u°
t 2 C � R2: ð13Þ

This problem is low-dimensional, continuous, non-convex, and
bounded.

Dijkstra’s Algorithm22 is a widely used algorithm for solving the
shortest path problem, i.e., the problem of finding the minimal-cost
path between two nodes in a weighted graph. Starting from an initial
node n0, the algorithm iteratively considers the closest visited node ~n,
and updates the distances to the nodes nið~nÞ connected to this node.
The algorithm terminates when the entire graph has been visited, or
when a target node has been reached. By visiting the nodes in order of
increasing cost, the algorithm is guaranteed to produce an optimal
solution. Consider a discrete problem where the turbine speed and
GVO take values on a regular grid, resulting in a collection of evenly-
spaced nodes. To ensure the computational feasibility of the trajectory
search, we consider coarsened trajectories, by effectively reducing the
frequency of the data points by K. Thus, we introduce a timescale by

Table 3 | Performance of the iTF-DNN

Start-up trajectory R2 MSE Bias (Min, Max)

Train

Classic 0.995 ± 0.001 0.025 ± 0.007 0.007 ± 0.054 (−1.972, 4.971)

Linear 0.985 ± 0.006 0.010 ± 0.004 −0.032 ± 0.033 (−1.877, 1.516)

2Slopes 0.992 ± 0.003 0.006 ±0.001 −0.020 ± 0.020 (−2.381, 1.322)

Validation

BEP 0.976 ± 0.008 0.028 ±0.015 −0.082 ± 0.041 (−1.897, 2.433)
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defining the increment Δt = KΔτ. To construct the graph for the Dijk-
stra optimization, we set all the nodes of the grid to be its vertices: For
a 2Dgriddefined by equidistant points along the intervals [0, uop,1] and
[0,uop,2], withN equidistant points along eachaxis, the total number of
points on the grid is N2. Each point (x1,i, x2,j) on the grid can be repre-
sented as:

x1, i = i
uop, 1

N
, x2, j = j

uop, 2

N
, for i, j =0, . . . ,N: ð14Þ

For each vertex, we draw edges to all nodes where a transition would
not violate the bounded increments condition (12): Let ni,j be the
node at the position (x1,i, x2,j). An edge exists between two nodes ni,j
and nk,l if and only if the following coordinate-wise inequality is
satisfied:

0< x1, i � x1, k ≤KΔu1 and 0< x2, j � x2, l ≤ KΔu2: ð15Þ

Next, we compute theweights for the edges: We set the edge weights
to correspond to the increase in damage incurred by extending the
path from a node n⋆ to a neighbor ~n. By setting the cost to the
increase in damage, we achieve the desirable property that the cost
to access ~n is exactly the damage of the least-damaging trajectory
that ends at ~n. To reconstruct the trajectory in the original time scale
Δτ, for the calculation of the weight, we fill in the control values
between two nodes and linearly interpolate between them at a rate of
1/Δτ.

Algorithm 1. Dijkstra-based Trajectory Optimization
Require: start_node, goal_node, priority_queue, cost, parent, visited
1: While priority_queue is not empty do
2: (current_cost, current_node) ← heappop(priority_queue)
3: if current_node == goal_node then
4: break
5: end if
6: for neighbor in get_neighbors(current_node) do
7: path ← reconstruct_path(parent, current_node) +

neighbor
8: trajectory ← interpolate_trajectory(path)
9: stress ← calculate_stress(trajectory)
10: new_cost ← compute_damage(stress)
11: if neighbor not in cost or new_cost < cost[neighbor] then
12: cost[neighbor] ← new_cost
13: parent[neighbor] ← current_node
14: heappush(priority_queue, (new_cost, neighbor))
15: end if
16: end for
17: end while
18: optimal_path ← reconstruct_path(parent, goal_node)
19: return optimal_path, cost[goal_node]
The described graph is used for the trajectory optimization pro-

blem (2) with the help of Dijkstra’s Algorithm 1 with the starting node
set to (0, 0) and the end and limit nodes uop = (736, 17). Note that the
maximum start-up duration, Tmax, is related to N and K by 2N �
ðKmsÞ=Tmax and that the number of edges that need to be explored
per node is of the order Enode ∝ K2N2 due to (15). The total computa-
tional complexity of the algorithm is dominated by the number of
edges EnodeN2 45. Combining these observations, the complexity scales
as EnodeN2 ∝ N2. We have selected the time resolution K = 128 and the
number of points N = 256, by manual adjustment as a compromise
between the computational complexity and the time discretisation
step of the optimized trajectory, given a maximum start-up dura-
tion Tmax = 65s.

To ensure viable trajectories are produced, we impose a limit on
turbine acceleration and GVO angular velocity (12), corresponding to

machine limits, which are 280rpms−1 and 2.16∘s−1 correspondingly.
Additionally, wedisallowparts of thephase space (13) since theywould
require active braking of the turbine to traverse or contain regions
where the trend iTF-DNN is particularly uncertain about its prediction.
See Fig. 4a for the disallowed region.

Equivalent time at Best Efficiency point quantification
At best efficiency point (BEP) the turbine converts the specific
hydraulic energy and the angular momentum of the flow into
mechanical energy with minimal losses, thus reaching the BEP. This
depends on the hydraulic machine geometry and control parameters
of the operating condition. The equivalent time at BEP expresses the
operational time of a hydraulic turbine as if it had been running con-
tinuously at its ideal conditions (BEP)16. To quantify the equivalent time
at BEP, we rely on steady-state stress measurement collected during
the second campaign. By analyzing a 20-second stress measurement
collected at the BEP, we calculate the damage incurred per second.We
divide the damage incurred during one start-up by this value to derive
the equivalent time at BEP. Note that in this study the term BEP tra-
jectory is reserved for a start-up sequence, tracking the BEP for each
rotational speed during the machine acceleration from 0 to nominal
rotational speed.

Data availability
The raw data from the stress measurements are protected and are not
available due to data privacy laws. The optimized control trajectory
data generated in this study and the trained model are available on
GitHub46.

Code availability
The modeling and optimization code, as well as a demo using a sim-
plified artificial dataset are available on GitHub46.
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